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Abstract— The problem of approximation to large-scale
Boolean networks is considered. First, we assume a large-
scale Boolean network is aggregated into several sub-networks.
Using the outputs(or inputs) of each sub-network as new state
variables, a new simplified time-varying network is obtained.
Then a time-invariant Boolean network is used to approximate
each subsystem. Observed data are used to find the best
approximating dynamic models. Finally, the aggregation method
is investigated.

Index Terms— Boolean network, Aggregation, Approxima-
tion, Modularity.

I. PRELIMINARIES

Accompanying the development of the systems biology the
interest in Boolean networks is rapidly increasing, because
the Boolean network, introduced firstly by Kauffman [1], has
been proved to be very powerful in modeling and quantitative
description of cell regulation [1], [2], [3], [4], [5], [6]. There
are two major obstacles in applying this model to real bio-
logical problems. The first one is that the dynamic model of
Boolean networks is a logical process. Unlike quantity-based
process, which can be described by differential equations or
difference equations, there are less mathematical tools for
logical process. Another difficulty lies on the computational
complexity. In general a real molecular network has large
number of nodes, it is very difficult, if not impossible, to
produce a precise model to describe it and further analyze
and control it. It has been pointed out that the computation
complexity of Boolean network related problems are NP hard
problem [7]. In fact, precise model can only be used to deal
with some simple genic networks such as yeast cell network
[8].

Recently, a new approach called the linear representation
of Boolean networks was proposed to convert the dynamics
of a Boolean network from its logical form into an algebraic
form [9]. Under the algebraic form the dynamics of a Boolean
network becomes a standard discrete-time dynamic systems,
which involves no logical operators any more. Hence, the
conventional tools, dealing with discrete-time systems, are
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applicable to Boolean networks. This approach has been suc-
cessfully applied to solve several important problems about
the structure analysis and synthesis of Boolean (control)
networks [10].

To describe this approach, we first introduce some nota-
tions.

1) Mm×n: the set of m×n real matrices. When m = n
it is briefly denoted as Mn;

2) Col(A) (Row(A)): the set of columns of A, Coli(A)
(Rowi(A)): the i-th column (row) of A;

3) δin: the i-th column of the identity matrix In;
4) D := {0, 1};
5) ∆n: ∆i = Col(In);
6) A ∈ Mm×n is called a logical matrix, if Col(A) ⊂

∆m, the set of m × n logical matrices is denoted by
Lm×n;

7) A logical matrix A = [δi1m δi2m · · · δinm ] is briefly
denoted by A = δm[i1, · · · , in].

8) A matrix A = (ai,j) ∈ Mm×n is called a Boolean
matrix if its entries ai,j ∈ D, i = 1, · · · ,m, j =
1, · · · , n. The set of m×n Boolean matrices is denoted
by Bm×n.

9) Let A = (ai,j) ∈ Bm×n. The Hamming weight of A
is the number of its nonzero entries, denoted by

∥A∥ := |{ai,j |ai,j = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n}| .

The basic tool for this approach is the semi-tensor product
of matrices [11], which is a generalization of the conventional
matrix product, defined as follows.

Definition 1.1: Let A ∈ Mm×n and B ∈ Mp×q . Assume
the least common multiple of n and p is t = lcm{n, p}. Then
the semi-tensor product of A and B, denoted by A ! B, is
defined as

(
A⊗ It/n

) (
B ⊗ It/p

)
. (1)

Remark 1.2: Throughout this paper the matrix product
is assumed to be the semi-tensor product. Since it is a
generalization of conventional matrix product, the symbol !
is mostly omitted, unless we should like to emphasize it.

A logical variable x can take values from D. A logical
function f(x1, · · · , xn) is a mapping f : Dn → D.
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Identifying 1 ∼ δ12 and 0 ∼ δ22 , we have vector form x ∈
∆2 and f : ∆n

2 → ∆2. In vector form, define x = !n
i=1xi,

then we have the following fundamental result.
Proposition 1.3: Given logical function f(x1, · · · , xn).

There exists a unique logical matrix, Mf ∈ L2×2n , such
that in vector form we have

f(x1, · · · , xn) = Mfx. (2)
Next, we consider a Boolean network. In general, the

dynamics of a Boolean network can be expressed as
⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = f1(x1(t), · · · , xn(t))
...
xn(t+ 1) = fn(x1(t), · · · , xn(t)),

(3)

where fi, i = 1, · · · , n are logical functions.
Using Proposition 1.3, we can express (3) into its

component-wise algebraic form as
⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = L1x(t)
...
xn(t+ 1) = Lnx(t),

(4)

where Li ∈ L2×2n is the structure matrix of fi, i = 1, · · · , n.
Multiplying the n equations in (4) together yields the

algebraic form of (3) as [10]

x(t+ 1) = Lx(t), (5)

where
L = L1 ∗ L2 ∗ · · · ∗ Ln,

“*” is the the Khatri-Rao product [12]. That is,

Coli(L) = !n
j=1 Coli(Lj), i = 1, · · · , n.

L is called the transition matrix of the network.
We give a simple example to illustrate it.
Example 1.4: Fig. 1 depicts a Boolean network.
Its dynamics is described as

⎧
⎪⎨

⎪⎩

x1(t+ 1) = x2(t) ∧ x3(t)

x2(t+ 1) = ¬x1(t)

x3(t+ 1) = x2(t) ∨ x3(t).

(6)

x1 x2

x3

Fig. 1. A Boolean network

It is easily verified that the network (6) has its component-
wise algebraic form as

⎧
⎪⎨

⎪⎩

x1(t+ 1) = δ2[1 2 2 2 1 2 2 2]x(t)

x2(t+ 1) = δ2[2 2 2 2 1 1 1 1]x(t)

x3(t+ 1) = δ2[1 1 1 2 1 1 1 2]x(t).

(7)

Multiplying three equations in (7) yields the algebraic form
(5) of network (6) with its transition matrix matrix

L = δ8[3 7 7 8 1 5 5 6].
The algebraic form (5) of a Boolean network is very pow-

erful in investigating its properties and its control designs.
In fact, since the transition matrix is unique, we can design
or manipulate a system by determine or change its transition
matrix.

Under the framework of algebraic form, this paper aims
at reducing the computational complexity of a large-scale
Boolean network by approximating it by a simplified net-
work. First, assume the network is aggregated, and time-
invariant networks are used to approximate each aggregated
sub-networks. Secondly, the modularity proposed in [13],
[14] is used to aggregate the system.

The paper is organized as follows: Section 2 considers
the expression of the simplified network, assume the net-
work is aggregated. Using observed data, section 3 provides
a approximation to each sub-network by a time-invariant
Boolean network. Section 4 reviews the method to aggregate
a network. Section 5 is a brief conclusion.

II. TRANSFER MATRIX OF AGGREGATED NETWORKS

Consider a Boolean control network. Its dynamics can be
expressed as
⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...
xn(t+ 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t));

yj(t) = hj(x1(t), · · · , xn(t)), j = 1, · · · , p,
(8)

where xi, i = 1, · · · , n are state variables, uk, k = 1, · · · ,m
are inputs (or controls), and yj , j = 1, · · · , p are outputs.

Using a similar technique as for Boolean network, we can
get the algebraic form of Boolean control network (8) as It
can be expressed into its algebraic form as

x(t+ 1) = Lx(t)u(t)
y(t) = Hx(t),

(9)

where x(t) = !n
i=1xi(t), u(t) = !m

i=1ui(t), y(t) =
!p

i=1yi(t), L ∈ L2n×2n+m , and H ∈ L2p×2n .
For a control system people are mainly interested in the

input-output mapping. Hence, a control system is commonly
considered as a black box. (see in Fig. 2)
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Σ

u1

um

y1

yp

...
...

Fig. 2. A Boolean control network

Ignoring the internal variables “xi(x)”, we have the input-
output dynamics as Then we have

y(t+ 1) = HLx(t)u(t) := L̃(t)u(t). (10)

where

L̃(t) = HLx(t) ∈ L2p×2m (11)

is the input-output transition matrix, which is a time-varying
matrix.

In general, p,m << n. Hence, when we use input-output
description, the size of the dynamics could be tremendously
reduced. This is the motivation of our approach.

Consider Boolean network (3) again. Assume it is aggre-
gated into s blocks. That is, there is a partition of states as

{x1, x2, · · · , xn} = Σ1 ∪ Σ2 ∪ · · · ∪ Σs.

Each block Σi has out-degree pi, i = 1, · · · , s, and we denote
its outgoing variables by

yi = {yi1, yi2, · · · , yipi
}, i = 1, · · · , s.

Fig. 3 depicts this aggregation.
Remark 2.1: 1) yij is also a state variable. That is,

Y :=
{
yij

∣∣ i = 1, · · · , s; j = 1, · · · , pi
}

⊂ X := {x1, x2, · · · , xn}.

x2x1

x3

x4

x5 x6

x8

x9

x7

x10

Σ1

Σ2

Σ3

Fig. 3. Network Aggregation

2) Let {ui
1, · · · , ui

qi} be the inputs to Σi. Since each
output of a sub-system Σi is the input of another sub-
system Σj and vise versa, we have

{
ui
j

∣∣ i = 1, · · · , s; j = 1, · · · , qi
}
= Y.

We call the variables in C the connecting variables. We
aggregate the overall network in such a way that the number
of connecting variables is as small as possible. Then we can
have the dynamics about variables in C as follows.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1(t+ 1) = L̃1(t)u1(t)

y2(t+ 1) = L̃2(t)u2(t)
...
ys(t+ 1) = L̃s(t)us(t),

(12)

where, to avoid notational mess, we also use yi for yi =
!pi

j=1y
i
j , and yi for ui = !qi

j=1u
i
j . We call (12) the dynamics

of the aggregated system. Since we aggregate the system in
such a way that |C| << n, (10) has a much smaller size than
the original system.

We use an example to illustrate the aggregated system.
Example 2.2: Consider the following network.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t+ 1) = x2(t) ∨ x4(t)

x2(t+ 1) = x3(t) ∧ x8(t)

x3(t+ 1) = x1(t) ↔ x2(t)

x4(t+ 1) = (x1(t) ∨ x5(t)) → x8(t)

x5(t+ 1) = ¬x4(t) ∨ x6(t)

x6(t+ 1) = x4(t) ∧ x5(t)

x7(t+ 1) = x7(t)∨̄x9(t)

x8(t+ 1) = x4(t) ↔ x7(t))

x9(t+ 1) = x8(t) ∨ x10(t)

x10(t+ 1) = ¬x7(t).

(13)

Now assume we aggregate the system into 3 subnetworks
as:

{x1, x2, x3} ∈ Σ1, {x4, x5, x6} ∈ Σ2, {x7, x8, x9, x10} ∈ Σ3

Now for outputs of each subsystem are

C =
{
y1 = x1, y2 = x4, y3 = x8

}
.

Then the system (13) can be expressed into its aggregated
form as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t+ 1) = δ2[1 1 1 1 1 1 1 2]x2(t)y2(t)y3(t)

:= L̃1y2(t)y3(t)

y2(t+ 1) = δ2[1 2 1 2 1 2 1 1]x5(t)y1(t)y3(t)

:= L̃2y1(t)y3(t)

y3(t+ 1) = δ2[1 1 2 1]x7(t)y2(t) := L̃3y2(t).

(14)

We refer to Fig. 4 for the description.
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Fig. 4. Aggregated system

III. MODEL APPROXIMATION

Consider the dynamics (12) of the aggregated network.
Now the problem is how to find the time-varying transition
matrices L̃i, i = 1, · · · , s. We use Example 2.2 to show this.

Example 3.1: Consider Example 2.2. Choosing X0 =
(1, 1, 0, 1, 1, 0, 1, 0, 1, 1), it is easy to calculate that for T =
0, 1, 2, · · · , we have

L̃1(t) =

{
δ2[1 1 1 1], t = 8T, t = 8T + 2

δ2[1 1 1 2], Otherwise;
(15)

L̃2(t) =

⎧
⎪⎨

⎪⎩

δ2[1 2 1 2], t = 8T, t = 8T + 2,

t = 8T + 5, t = 8T + 7

δ2[1 1 1 2], Otherwise;
(16)

L̃3(t) =

⎧
⎪⎨

⎪⎩

δ2[1 1], t = 8T, t = 8T + 2,

t = 8T + 5, t = 8T + 7

δ2[2 1], Otherwise.
(17)

In fact, since (13) has a unique attractor as

(1101101011)→ (1010010110) → (0101101111)
↑ ↓

(1001101011) (1001010110)
↑ ↓

(1000010110)← (0001101111) ← (1011010110)

Then we know that for any initial state, after certain time
(transient time), (15)-(17) are always true. (replacing t by
t+ k0 for certain k0 > 0.

But in general, it is very difficult, if not impossible, to find
Li(t). In fact, for a large or huge network, it is even hard
to know the dynamic model of the overall network. Then an
approximation is necessary.

We consider a general time-varying Boolean network
⎧
⎪⎪⎨

⎪⎪⎩

z1(t+ 1) = f1(t, z1(t), · · · , zs(t))
...
zs(t+ 1) = fs(t, z1(t), · · · , zs(t)),

(18)

where fi, i = 1, · · · , s, are time-varying logical functions.

In this sub-section, we consider to use a time-invariant
model to approximate it. Consider the following model

⎧
⎪⎪⎨

⎪⎪⎩

ẑ1(t+ 1) = f̂1(ẑ1(t), · · · , ẑs(t))
...
z̄s(t+ 1) = f̂s(ẑ1(t), · · · , ẑs(t)).

(19)

Assume the time-varying Boolean network (18) is approx-
imated by a time-invariant Boolean network (19).

Our purpose is to choose an approximation model, which
makes the error probability as small as possible.

As aforementioned, for a large or huge network, it is very
hard to know the dynamics of the overall network. So we
assume we have some observed paired data as

D = {(dk, ek)|k = 1, 2, · · · , N}, (20)

where dk and ek are two observed data for two adjacent
moments t and t+1 respectively. Precisely, there is a moment
t such that (in vector form)

dk = !s
i=1zi(t), ek = !s

i=1zi(t+ 1).

For statement ease, we denote

D0 = {dk|(dk, ek) ∈ D}. (21)

Denote the algebraic form of (19) as

ẑ(t+ 1) = Lẑ(t), (22)

where L ∈ L2s×2s . Then L is determined by

L∗ = arg

⎧
⎨

⎩L

∣∣∣∣∣∣
min

L∈L2s×2s

∑

zα
t ∈D0

(∥∥Lzαt ∨̄zαt+1

∥∥)
⎫
⎬

⎭ . (23)

In fact, a more precise approach is the component-wise ap-
proximation. Assume (19) has its component-wise algebraic
form as

ẑi(t+ 1) = Liẑ(t), i = 1, · · · , s. (24)

Then,

L∗
i = arg

⎧
⎨

⎩Li

∣∣∣∣∣∣
min

Li∈L2×2s

∑

zα
t ∈D0

(∥∥Liz
α
t ∨̄(zαt+1)i

∥∥)
⎫
⎬

⎭ ,

i = 1, · · · , s.
(25)

We consider how to find L∗. (Since L∗
i can be found in

the same way, we ignore it here.) Split D0 into 2s groups as

Ei =
{
dk ∈ D0|dk = δi2s

}
, i = 1, · · · , 2s. (26)

Assume

Ei ̸= ∅, i = 1, · · · , 2s. (27)

If (27) is not satisfied, we say that the data D are not enough.
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Split Ei into 2s subsets as

Ej
i =

{
ek = δj2s |dk ∈ Ei

}
, i, j = 1, · · · , 2s.

Then we set

j∗i = arg

{
ji

∣∣∣∣ max
1≤ji≤2s

∣∣∣Eji
i

∣∣∣
}
. (28)

Note that it is easy to see that j∗i always exists, but it may
not unique.

The following result is an immediate consequence of the
construction.

Theorem 3.2: Let the structure matrix L∗ of the best
approximated model be as in (23) and j∗i are calculated as
in (28). Then

L∗ = [j∗1 j∗2 · · · j∗2s ] . (29)
Example 3.3: Consider the follows system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t+ 1) = x2(t) ∧ x3(t)
...
x99(t+ 1) = x100(t) ∧ x101(t)

x100(t+ 1) = ¬ (x101(t) ∧ x102(t))

x101(t+ 1) = ¬ (x102(t) ∨ x103(t))
...
x199(t+ 1) = ¬ (x200(t) ∨ x201(t))

x200(t+ 1) = ¬ (x201(t) ∨ x202(t))

x201(t+ 1) = ¬ (x202(t) → x203(t))
...
x298(t+ 1) = ¬ (x299(t) → x300(t))

x299(t+ 1) = x300(t) ∧ x1(t)

x300(t+ 1) = ¬ (x1(t) ∧ x2(t)) .

(30)

Assume we aggregate it into three sub-systems as follows:

Σ1 = {xi|1 ≤ i ≤ 100};
Σ2 = {xi|101 ≤ i ≤ 200};
Σ3 = {xi|201 ≤ i ≤ 300}.

Then the connecting elements are

C = {y1 = x101, y2 = x102, y3 = x201,

y4 = x202, y5 = x1, y6 = x2}.

Setting y1 = y1y2, y2 = y3y4, y3 = y5y6, we have the
following component-wise algebraic form as

⎧
⎪⎨

⎪⎩

y1(t+ 1) = L1y2(t)

y2(t+ 1) = L2y3(t)

y3(t+ 1) = L3y1(t),

(31)

where Li ∈ L2×4, i = 1, 2, 3. Since the model (30) is
known, we can choose xk(0) as the initial states arbitrary and
calculate the corresponding xk(1). Then take the projection

TABLE I
OBSERVED DATA

.

i\|Ej
i |\j 1 2 3 4

1 4 2 1 17
2 775 764 360 912
3 691 800 356 930
4 3342 84876 2185 3885

a. Ej
i for L1

i\|Ej
i |\j 1 2 3 4

1 0 311 312 62527
2 0 12 8 223
3 0 15 14 322
4 0 2444 2421 31291

b. Ej
i for L2

i\|Ej
i |\j 1 2 3 4

1 307 7 5 4515
2 62303 205 302 23557
3 303 5 3 2619
4 313 7 6 5443

c.Ej
i for L3

xk(0)|C := dk and xk(1)|C := ek as the observed data.
Since every trajectory will enter a cycle, the data may not be
enough if the cycle and the basin are not long enough. Thus,
we can choose another initial state and finally add all |Ej

i |
of the data with different initial states.

In this example, we choose the initial states randomly for
100 times, each time we observe 1000 data. The observed
data is as in Table 1.

Thus, L1, L2, and L3 can be determined as
⎧
⎪⎨

⎪⎩

L1 = δ4[4 4 4 2]

L2 = δ4[4 4 4 4]

L3 = δ4[4 1 4 4].

IV. CONCLUSION

In this paper, we considered an aggregation-based approx-
imation to large-scale Boolean network. If the network is
aggregated to several sub-networks, we obtain a simplified
network using the outputs(or inputs) of each sub-network as
new state variables. However, it is difficult to find the precise
expression of the simplified network. Then a time-invariant
Boolean network is used to approximate the network, using
the observed data. Finally, an aggregation method which
maximizes the modularity is reviewed.

The results in this paper is very elementary and heuristic.
But it might hint a very challenging and meaningful method
for reducing the computation of Boolean network to make it
applicable.
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APPENDIX

We review the method proposed in [13], [14] to split a
directed network into two subnetworks: Assume the network
consists of n nodes. Let A be the adjacent matrix, kin

i the
in-degree of i-th node, kout

i the out-degree of i-th node,
s = [s1, · · · , sn], where si ∈ {−1.1}, which corresponds
a partition as:

G1 = {i|si = 1}, and G2 = {i|si = −1}.

Set

m :=
n∑

i=1

kout
i =

n∑

i=1

kin
i =

∑

i,j

Aij .

Then we define the modularity as

Q(s) = 1
2m

∑
i,j

(
Aij −

kin
i kout

j

m

)
(sisj + 1)

= 1
2m

∑
i,j

(
Aij −

kin
i kout

j

m

)
sisj .

(32)

The method proposed by [14] is to find the best s which
maximize Q. Denote

Bij = Aij −
kin
i kout

j

m
. (33)

Then (32) can be expressed in a quadratic form as

Q(s) = sTBs. (34)

Since the graph is directed, B is not symmetric. However, to
maximize (34) is equivalent to maximize

Q(s) = sT (B +BT )s, (35)

and B + BT is manifestly symmetric, thus all of its eigen-
values are real.

To find the best split, we need to find the maximum
eigenvalue µm of sT (B + BT )s. If µm > 0, we can find
its corresponding eigenvector u. Then set

si =

{
1, ui ≥ 0

−1, ui < 0.

(When µm ≤ 0, the network is indivisible.) For the second
division for sub-network G, we need to consider

∆Q =
1

2m

∑

i,j∈G

[
(Bi,j +Bj,i)− δij

∑

k∈G

(Bi,k +Bk,i)

]
sisj

:=
1

2m
sT (B(G) +B(G)T )s,

(36)

where

B(G)
i,j = Bi,j −

1

2
δij

∑

k∈G

(Bi,k +Bk,i).
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